百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 文章教程 > 正文

熬了几个通宵,终于把初中到大学学习算法的必备数学知识梳理完3

yund56 2025-03-04 12:00 8 浏览

作者简介:阿里巴巴高级技术专家,一直关注前端和机器学习领域相关技术,在知乎和微信公众号的“全栈深入”分享深度硬核技术文章。

由于头条号字数限制,前两篇文章《熬了几个通宵,终于把初中到大学学习算法的必备数学知识梳理完1》发了两次还没有发布完,这是第3部分内容,主要介绍微积分、矩阵等知识。大家记得关注、点赞、收藏支持一下哈!

由于文章较长,文章将分成了3个部分,本文是第3部分,第1,2部分内容可以点击下方链接,也可以参考文章末尾的 了解更多 直达。


本文是讲解从初中、高中、大学里面用到的数学知识,这些数学知识是计算机算法、机器学习等领域学习的基础。数学是很多行业领域的基础学科,很多领域底层都是数学。

第1部分:介绍了初中、高中里面学到的数学概念、多项式、平方差、平方和、因式分解、一元二次方程、集合、充要条件、函数、幂函数、指数函数等知识。

第2部分:介绍对数函数、反函数、三角函数、数列、导数等知识。

第3部分(本文):将介绍高等数学中定积分、微积分、矩阵等相关知识。


-------------我是分隔线,接上一篇-------------


15、高等数学 - 定积分

1、近似替代法求曲面的面积及加速行汽车的距离。

练习1

阴影部分类似于一个梯形,但有一边是曲线y=f(x)的一段。我们把由直线x=a, x=b(a≠b), y=0和曲线 y=f(x) 所围成的图形称为曲边梯形. 当 y= x^2, x=1, y=0时,如何计算这个曲边梯形的面积呢?





求解步骤

1)分割:将区间[0, 1]分割成n个小区间,用表达式计算每个小区间的长度△x=i/n - (i-1)/n = 1/n,面积△S ,总面积 .

2)近似替代:当n很大,△x很小时,可认为每个区间f(x)=x^2值变化很小,近似等于一个常数(可认为是左端点处的函数值y=x^2)。即用直线段近似地代替小曲边,近似可用小矩形面积代替曲边梯形面积。得到面积△S的表达式 其中i为第i个小区间,。

3)求和:通过将n段的每个△S进行相加,得到一个表达式,进行代数运算后得到总面积S一个简单的表达式:

4)取极限:当n取无穷大时,即△x趋向于0时,得到总面S的会上为1/3


练习2

汽车以速度v作匀速直线运动时,经过时间t所行驶的路程为s=vt. 如果汽车作变速直线运动,在时刻t的速度为 (t的单位:h,v的单位:km/h), 那么它在0≤t≤1这段时间内行驶的路程s(单位:km)是多少?

求解步骤:参照上个练习,得到最终答案为:


2、定积分

由近似替代法求曲面的面积及加速行汽车的距离都可归结为求这种 特定形式和的极限。将区间[a,b]等分成n个小区间,在每个小区间上任取一点(i=1,2,…,n)作和式为:

时,该和式无限接近某个常数,该常数叫做函数f(x)在区间[a,b]上的定积分(definite integral),记作:

其中:

- a和b:积分上限和积分下限

- 区间[a,b]:积分区间

- 函数f(x):被积函数

- x:积分变量

- f(x)dx:被积式

上面曲边梯形面积定积分表示:

几何意义:表示由直线x=a, x=b (a!=b),y=0和曲线y=f(x)所围成的曲边梯形的面积。

上面汽车路径定积分表示:


练习

1)计算 的值

解题步骤:

- 分割:区间[0,1]等分为n个区间, [i-1/n, i/n] (i=1,2,3..n),每个小区间长度△x=i/n - (i-1)/n = 1/n

- 近似代替、作和:

- 取极限:

定积分性质:

  • 其中k为常数
  • 其中


15、高等数学 - 微积分

1、微积分

用定积分的定义计算的值比较麻烦,导数和定积分存在联系。

一个作变速直线运动的物体的运动规律是y=y(t). 由导数的概念可知,它在任意时刻t的速度v(t)=y'(t). 设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?



用定积分的定义计算 的值比较麻烦,导数和定积分存在联系。

解:

1)物体的位移s是函数y=y(t)在t=b处与t=a处的函数值之差,即 s=y(b)-y(a)

2) 用定积分求位移:

- 分割

- 近似替代、求和

- 求极限

得到

n越大,△t越小,区间[a,b]划分的越细, 与s的近似程度就越好。


3) 由定积分得到


4) 由1),2)结果得到


5) 微积分基本定理

fundamental theorem of calculus,(牛顿-莱布尼兹公式, Newton-Leibniz Formula).

一般地如果f(x)是区间[a,b]上的连续函数,且F'(x) = f(x),则

,则F(b)-F(a)常记作 ,即:


计算定积分的关键是找到满足 的函数F(x),通常可运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F(x)


> 练习

1、计算下列定积分

1)

2)

3)

4)

5)


> 解

1) 因为 (lnx)' = 1/x,所以

2) 因为 , 所以

3)

三角函数的定积分等于三角函数的面积



4)




5)




参考:基本初等函数的求导公式

  1. 若f(x)=c(c为常数),则f'(x)=0
  2. 若f(x)=x(n∈Q),则f'(x)=nx^(n-1)
  3. 若f(x)=sinx,则f'(x)=cosx
  4. 若f(x)=cosx,则f'(x)=-sinx
  5. ;
  6. ;
  7. 若f(x)=loga x,则f'(x)=1 / (xlna)
  8. 若f(x)=lnx,则f'(x)=1/x

2、定积分的简单应用

1、计算曲线所围图形的面积S 解:

1) 画出草图



2) 解方程

得到的解为交点的横坐标为x=0, x=1

3) 求图形面积

S = S曲边形梯形OABC - S曲边形梯形OABD =


2、计算直线y=x-4, 曲线所围图形的面积S

1) 画出草图

2) 解方程

直线与曲线交点的坐标为(8,4),直线与x轴交点坐标为(4,0)

3) 求图形面积

3、变速直线运动的路程 作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分

辆汽车的速度-时间曲线如图所示,求汽车在这1min行驶的路程.


解:


16、高等数学 - 矩阵

1、矩阵与向量
1) 矩阵
矩阵是矩形的数组。

  • 矩阵的表示:A=(a_ij),其中i=1,2,3 . j=1,2,3
  • 矩阵元素表示:第i行,第j列的元素通常表示为:a_ij。用大写字母表示矩阵,用小写字母表示矩阵中的元素。
  • 矩阵集合:用R ^{mxn}表示所有元素为实数的m x n矩阵集合。
  • 矩阵来自集合表示:元素来自集合S的m x n 矩阵的集合可用S^{m x n}表示。

2) 矩阵转置

交换矩阵的行和列,获得的矩阵是矩阵A的转置

3) 向量
向量是一维数组。长度为n的向量称为
n向量,用xi表示向量中第i个元素,其中i=1,2,3..n。将向量的标准形式定义为列向量,是n x 1的矩阵,转置后是行向量。

单位向量:除第i个元素为1,其他均为0的向量。


2、各种矩阵

  • 零矩阵:所有元素均为0的矩阵,常表示为0。
  • 方阵:正方形 n x n的矩阵
  • 对角矩阵:一个矩阵中对于任意,i≠j,均有aij=0aij=0。即非对角元素均为0


  • 单位矩阵:In, 对角线元素均为1的n x n对角矩阵。
    In=diag(1,1,...,1)=[10?0 01?0 ???? 00?1 ]

3、矩阵基本操作

矩阵或向量中的元素是实数、复数、或整数取模某素数等数系中的数。

  • 矩阵加法
    如果矩阵A=(aij),B=(bij)是m x n矩阵,两者的矩阵和是对应位置上的元素进行相加,得到的和C=(cij)=A+BC=(cij)=A+B也是m x n的矩阵。即cij=aij+bij

零矩阵相加
是矩阵加法的单位元,A+0=0+A=A

  • 矩阵数乘
    标量倍数:λA=(λaij)是A的标量倍数。通过将λλ分别乘以每个元素。?1?A=?A?1?A=?A
  • 矩阵减法
    A + (-B) = A - B
    A + (-A) = -A + A = 0
  • 两个相容的矩阵A和B,即A的列数与B的行数相等才能相乘。

4、各矩阵相乘

- 单位矩阵相乘:

- 零矩阵相相乘:A0=0

- 矩阵乘法结合率:A(BC)=(AB)C

- 矩阵乘法对加法满足分配律:A(B+C)=AB+AC。例外:n>1,n x n的矩阵乘法不满足交换律。如下:


- 矩阵向量乘积:可把向量看作n x 1的矩阵相乘。

- 内积:如果两个向量相乘,则 是一个1x1的矩阵,称之为x与y的内积。

- 外积:矩阵 是n x n的矩阵Z,称为x与y的外积。

- 欧几里德范式:定义 n 向量x的范式 ,x的范式是其在n维欧几里德空间内的长度。


5、矩阵的基本性质

1)矩阵的逆

定义 n x n的矩阵A的逆 为满足 的n x n矩阵(即为原矩阵的倒数)。许多非零矩阵没有逆矩阵。

如求


- 可逆矩阵:若矩阵可逆则称为可逆矩阵或非奇异矩阵,如果存在则其是唯一的。

- 不可逆矩阵:没有逆的矩阵为不可逆的或奇异的。

- 逆操作与转置操作可交换顺序:


2)矩阵的线性相关和无关

- 线性相关:若存在不全为零的相关系数 c1,c2, ..,cn,使得 ,则称向量 是线性相关的。

- 线性无关:不是线性相关的。单位矩阵的列向量是线性无关的。

3)矩阵的秩

对于非零 m x n的矩阵A:

- 列秩:最大线性无关`列`集合的大小

- 行秩:最大线性无关`行`集合的大小

任意矩阵A所共有的一个基本性质是A的行秩等于其列秩。简称为A的迭。

秩:非零m x n矩阵A, m x r的矩阵B,r x n的矩阵C,使得 A = BC时最小数值r是A的秩。

矩阵的秩

- 矩阵的秩是[0, min(m, n)]内的整数

- 零矩阵的秩是0,而n x n单位矩阵的秩是n

满秩

- 如果 n x n方阵的秩是n,则它是满秩的。

- 如果 m x n矩阵的秩是n,则它是列满秩的。

定理

- 定理1:一个方阵是满秩的,当且仅当该方阵是非奇异的。

- 定理2:一个矩阵A是列满秩的,当且仅当该矩阵不存在空向量

- 推论3:一个方阵是奇异的,当且仅当它有空向量


4)矩阵的行列式

n x n(n>1)矩阵A的第i行j列子矩阵,是一个删除A中i行j列后得到的(n-1)x(n-1)矩阵 。利用子矩阵递归定义该矩阵的行列式。

为元素 的代数余子式。


行列式性质

定理4:

- 如果矩阵A中某行或某列为0,则det(A)=0

- 当将矩阵A的任意一行(或列)的每个元素乘以 后,A的行列式乘以

- 当将矩阵A的任意一行(或列)的每个元素加到另一行(或列)的元素上,则A的行列式不变

- 矩阵A的行列式与其转置 的行列式相等

- 当交换A的任意两行(或两列)时,行列式改变正负号

定理5:n x n 矩阵A是奇异的,当且仅当dt(A)=0。


5)正定矩阵

如果n x n矩阵A满足对于所有n向量 ,有 ,则称A是正定的。

对于任意列满秩的矩阵A,矩阵 是正定的。


--------------------我是分割线--------------------


如果你觉得有收获,就帮忙关注、点个赞、收藏一下,这是对我这几天来的敲公式的最大鼓励,也是我持续分享的动力,谢谢你们的支持!

到此,基本内容介绍完了,要想看完整版本可到"全栈深入"公众号或知乎中查看。后面将会补充介绍其他中学课本中没有的其它数学知识,主要围绕线性代数、高等数学、概率等三个部分。关注我,将会持续给大家更多深度的文章。


作者简介:阿里巴巴高级技术专家,一直关注前端和机器学习领域相关技术,在知乎和微信公众号的“全栈深入”分享深度硬核技术文章。关注我,持续给你带来技术干货。

相关推荐

重生之我在头条学html网页编程,这一世我一定学好,成为编程高手

有人要问了html是什么东西?就是用来设计网页的一种语言会不会很难啊?这是很多朋友担心的,我告诉大家这是最简单最基础也最容易学习的一款入门级语言,当初我也是经常因为学不会C语言而苦恼自从学习了html...

如何在网页3D CAD中创建一个三维管道模型

前言在网页CAD中进行三维建模是一项有趣的任务。本文将介绍如何利用mxcad3d来创建三维管道模型。该工具提供了一系列三维建模功能的API,使得建立复杂的管道结构变得简单直观。安装在此之前,需要先安装...

网页模版如何用

网页模版已成为如今网站建设的核心工具。随着互联网需求的增长,越来越多的企业和组织需要建立自己的网站,以展示他们的品牌和服务。在这个过程中,网页模版为他们提供了一种简单而高效的方式来构建网站。所谓网页模...

AI嵌入式Flowcode编程网页开发人员入门指南

WebDeveloper允许使用FlowcodeIDE环境开发具有交互性的网页。可以在2D面板中添加特殊网页组件,以创建网页的视觉表示,并可以使用流程图添加交互功能。它的引入意味着Flowcod...

用Deepseek制作网页版的汉诺塔游戏保姆级教程

在deepseek中输入:“帮我做一个网页版的汉诺塔演示游戏,游戏包含2层、3层、4层、5层的汉诺塔游戏演示,制作自动求解演示按钮,点击按钮就可以生成出步数,同时自动演示最优解动画。”最后把生成的程序...

TaskBuilder前端页面CSS样式规则设置

在前端页面设计器内,点击底部的“CSS样式”选项卡,可以打开CSS样式设计器,在此查看和设计当前页面的CSS样式规则,如下图所示:3.3.6.1引入外部样式文件如果要在页面中引入外部CSS文件,可以点...

使用 Python、FastHTML 和 Uvicorn 构建简单的博客网站

FastHTML是2024年7月推出的PythonWeb框架,是一个简单但功能强大的框架,允许开发人员使用纯Python构建Web应用程序。(不需要复杂的模板引擎)。Fast...

用AI可以生成HTML网页了,很多初级前端都要失业了

即使你完全不懂html,javascript,css,也能做出漂亮的网页,这在以前是不可想象的,而现在确是可行的,因为有这样一个项目:openUI。openUI不仅仅能生成html页面,还能生成自适应...

python原始套接字socket下载http网页文件到txt

python原始套接字socket下载http网页文件到txtimportsocketdefdownload_webpage(url,output_file):try:...

高效排版:实现DeepSeek生成内容Word格式排版并导...

高效排版:实现DeepSeek生成内容Word格式排版并导出的经典方法,步骤简洁高效:DeepSeek生成内容复制出来容易出现乱码,下面介绍一种比较高效简单的方法!一、核心三步法1.调整模型模式在D...

打工人福音!3分钟教你学会word精美排版

昨天大熊介绍了word一键排版的三种办法,今天我们来详细讲讲第二种办法,用html代码实现一键排版,然后再导出pdf实现精美效果。打工人,打工魂,你是不是也有以下烦恼?下面是我经过多次和Deepsee...

使用 HTML 创建可折叠的交互式组件,一行 JS 代...

如果你想创建一个可折叠的交互式组件,使用<details>元素即可,一行JavaScript也不用写。<details>组件定义了一个可折叠的容器,它的第一个元素必须...

新手小白1分钟学会Word——文档的编辑1.1

天空一声巨响,迷人的我闪亮登场,亲爱的家人们,周末好呀!话不多说,咱们继续开干!昨天说到本节还有个小尾巴,那咱们就把这个小尾巴了结了,然后开始新篇章~四、保存文档我们对文档编辑完之后最重要的一步就...

超强!DeepSeek+HTML制作数据看板,老板看了都点赞

DeepSeek以极强的推理能力,支持生成各种代码,比如Python、SQL、Matlab、JS、HTML等,你可以拿这些代码放到编译器里,就能直接跑出结果,比如机器学习算法、exe应用、可视化图表、...

什么是Tailwind CSS

什么是TailwindCSSTailwindCSS是一个实用优先(Utility-First)的CSS框架,其核心思想是通过直接在HTML中组合预定义的类名来快速构建界面样式,无需编写传...