百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 文章教程 > 正文

Yolov8不废话!参考手册!(yolov5l)

yund56 2025-07-17 00:03 16 浏览

yolo task=detect mode=train model=yolov8n.pt       args...
          classify    predict     yolov8n-cls.yaml args...
          segment     val         yolov8n-seg.yaml args...
          export                  yolov8n.pt       format=onnx args...

使用Ultralytics YOLO进行模型训练

* 如COCO、VOC、ImageNet等YOLOv8数据集在首次使用时会自动下载,即 `yolo train data=coco.yaml`
from ultralytics import YOLO


model = YOLO('yolov8n-pose.yaml')  
model = YOLO('model/yolov8n-pose.pt')  
model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt')  


results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640)

yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640


yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640


yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640
from ultralytics import YOLO


model = YOLO('yolov8n.yaml')  
model = YOLO('model/yolov8n.pt')  
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  


results = model.train(data='coco128.yaml', epochs=100, imgsz=640)

yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640


yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640


yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

在COCO128数据集上训练YOLOv8n模型100个时期,图像大小为640。可以使用device
参数指定训练设备。如果没有传递参数,并且有可用的GPU,则将使用GPU device=0,否则将使用device=cpu。有关完整列表的训练参数,请参见下面的参数部分。

设备将自动确定。如果有可用的GPU,那么将使用它,否则将在CPU上开始训练。

from ultralytics import YOLO


model = YOLO('yolov8n.yaml')  
model = YOLO('model/yolov8n.pt')  
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  


results = model.train(data='coco128.yaml', epochs=100, imgsz=640)

yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640


yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640


yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

多GPU训练通过在多个GPU上分布训练负载,实现对可用硬件资源的更有效利用。无论是通过Python API还是命令行界面,都可以使用此功能。
若要启用多GPU训练,请指定您希望使用的GPU设备ID。

要使用2个GPU进行训练,请使用CUDA设备0和1,使用以下命令。根据需要扩展到更多GPU。

from ultralytics import YOLO


model = YOLO('model/yolov8n.pt')  


results = model.train(data='coco128.yaml', epochs=100, imgsz=640, device=[0, 1])

yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 device=0,1

在处理深度学习模型时,从之前保存的状态恢复训练是一个关键特性。在各种情况下,这可能很方便,比如当训练过程意外中断,或者当您希望用新数据或更多时期继续训练模型时。

恢复训练时,Ultralytics YOLO将加载最后保存的模型的权重,并恢复优化器状态、学习率调度器和时期编号。这允许您无缝地从离开的地方继续训练过程。

在Ultralytics YOLO中,您可以通过在调用train方法时将resume参数设置为True并指定包含部分训练模型权重的.pt
文件路径来轻松恢复训练。

下面是使用Python和命令行恢复中断训练的示例:

from ultralytics import YOLO


model = YOLO('path/to/last.pt')  


results = model.train(resume=True)

yolo train resume model=path/to/last.pt

通过设置resume=True,train函数将从’path/to/last.pt’文件中存储的状态继续训练。如果省略resume
参数或将其设置为False,train函数将启动新的训练会话。

请记住,默认情况下,检查点会在每个时期结束时保存,或者使用save_period参数以固定间隔保存,因此您必须至少完成1个时期才能恢复训练运行。

YOLO模型的训练设置是指用于对数据集进行模型训练的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。一些常见的YOLO训练设置包括批大小、学习率、动量和权重衰减。其他可能影响训练过程的因素包括优化器的选择、损失函数的选择以及训练数据集的大小和组成。仔细调整和实验这些设置以实现给定任务的最佳性能是非常重要的。

描述

model

None

模型文件路径,例如 yolov8n.pt, yolov8n.yaml

data

None

数据文件路径,例如 coco128.yaml

epochs

100

训练的轮次数量

patience

50

早停训练的等待轮次

batch

16

每批图像数量(-1为自动批大小)

imgsz

640

输入图像的大小,以整数表示

save

True

保存训练检查点和预测结果

save_period

-1

每x轮次保存检查点(如果<1则禁用)

cache

False

True/ram, disk 或 False。使用缓存加载数据

device

None

运行设备,例如 cuda device=0 或 device=0,1,2,3 或 device=cpu

workers

8

数据加载的工作线程数(如果DDP则为每个RANK)

project

None

项目名称

name

None

实验名称

exist_ok

False

是否覆盖现有实验

pretrained

True

(bool 或 str) 是否使用预训练模型(bool)或从中加载权重的模型(str)

optimizer

'auto'

使用的优化器,选择范围=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]

verbose

False

是否打印详细输出

seed

0

随机种子,用于可重复性

deterministic

True

是否启用确定性模式

single_cls

False

将多类数据作为单类训练

rect

False

矩形训练,每批为最小填充整合

cos_lr

False

使用余弦学习率调度器

close_mosaic

10

(int) 最后轮次禁用马赛克增强(0为禁用)

resume

False

从最后检查点恢复训练

amp

True

自动混合精度(AMP)训练,选择范围=[True, False]

fraction

1.0

训练的数据集比例(默认为1.0,即训练集中的所有图像)

profile

False

在训练期间为记录器分析ONNX和TensorRT速度

freeze

None

(int 或 list, 可选) 在训练期间冻结前n层,或冻结层索引列表

lr0

0.01

初始学习率(例如 SGD=1E-2, Adam=1E-3)

lrf

0.01

最终学习率 (lr0 * lrf)

momentum

0.937

SGD动量/Adam beta1

weight_decay

0.0005

优化器权重衰减5e-4

warmup_epochs

3.0

热身轮次(小数ok)

warmup_momentum

0.8

热身初始动量

warmup_bias_lr

0.1

热身初始偏差lr

box

7.5

框损失增益

cls

0.5

cls损失增益(根据像素缩放)

dfl

1.5

dfl损失增益

pose

12.0

姿态损失增益(仅限姿态)

kobj

2.0

关键点obj损失增益(仅限姿态)

label_smoothing

0.0

标签平滑(小数)

nbs

64

标称批大小

overlap_mask

True

训练期间掩码应重叠(仅限分割训练)

mask_ratio

4

掩码降采样比率(仅限分割训练)

dropout

0.0

使用dropout正则化(仅限分类训练)

val

True

训练期间验证/测试

在训练YOLOv8模型时,跟踪模型随时间的性能变化可能非常有价值。这就是记录发挥作用的地方。Ultralytics的YOLO提供对三种类型记录器的支持 -
Comet、ClearML和TensorBoard。

要使用记录器,请在上面的代码片段中的下拉菜单中选择它并运行。所选的记录器将被安装和初始化。

TensorBoard
是TensorFlow的可视化工具包。它允许您可视化TensorFlow图表,绘制有关图表执行的定量指标,并展示通过它的附加数据,如图像。

load_ext tensorboard
tensorboard --logdir ultralytics/runs  

在本地使用TensorBoard,运行下面的命令并在 http://localhost:6006/ 查看结果。

tensorboard --logdir ultralytics/runs  

这将加载TensorBoard并将其定向到保存训练日志的目录。

在设置好日志记录器后,您可以继续进行模型训练。所有训练指标将自动记录在您选择的平台中,您可以访问这些日志以监控模型随时间的表现,比较不同模型,并识别改进的领域。

将 YOLOv8n 模型导出为 ONNX 或 TensorRT 等不同格式。查看下面的参数部分,了解完整的导出参数列表。

from ultralytics import YOLO


model = YOLO('model/yolov8n.pt')  
model = YOLO('path/to/best.pt')  


model.export(format='onnx')
yolo export model=yolov8n.pt format=onnx  
yolo export model=path/to/best.pt format=onnx  

YOLO 模型的导出设置是指用于在其他环境或平台中使用模型时保存或导出模型的各种配置和选项。这些设置会影响模型的性能、大小和与不同系统的兼容性。一些常见的
YOLO 导出设置包括导出的模型文件格式(例如 ONNX、TensorFlow SavedModel)、模型将在哪个设备上运行(例如
CPU、GPU)以及是否包含附加功能,如遮罩或每个框多个标签。其他可能影响导出过程的因素包括模型用途的具体细节以及目标环境或平台的要求或限制。重要的是要仔细考虑和配置这些设置,以确保导出的模型针对预期用例经过优化,并且可以在目标环境中有效使用。

描述

format

'torchscript'

导出的格式

imgsz

640

图像尺寸,可以是标量或 (h, w) 列表,比如 (640, 480)

keras

False

使用 Keras 导出 TF SavedModel

optimize

False

TorchScript:为移动设备优化

half

False

FP16 量化

int8

False

INT8 量化

dynamic

False

ONNX/TensorRT:动态轴

simplify

False

ONNX/TensorRT:简化模型

opset

None

ONNX:opset 版本(可选,默认为最新版本)

workspace

4

TensorRT:工作区大小(GB)

nms

False

CoreML:添加 NMS

下表中提供了可用的 YOLOv8 导出格式。您可以使用 format 参数导出任何格式的模型,比如 format='onnx' 或 format='engine'。

格式

format 参数

模型

元数据

参数

PyTorch

-

yolov8n.pt

-

TorchScript

torchscript

yolov8n.torchscript

imgsz, optimize

ONNX

onnx

yolov8n.onnx

imgsz, half, dynamic, simplify, opset

OpenVINO

openvino

yolov8n_openvino_model/

imgsz, half

TensorRT

engine

yolov8n.engine

imgsz, half, dynamic, simplify, workspace

CoreML

coreml

yolov8n.mlpackage

imgsz, half, int8, nms

TF SavedModel

saved_model

yolov8n_saved_model/

imgsz, keras

TF GraphDef

pb

yolov8n.pb

imgsz

TF Lite

tflite

yolov8n.tflite

imgsz, half, int8

TF Edge TPU

edgetpu

yolov8n_edgetpu.tflite

imgsz

TF.js

tfjs

yolov8n_web_model/

imgsz

PaddlePaddle

paddle

yolov8n_paddle_model/

imgsz

ncnn

ncnn

yolov8n_ncnn_model/

imgsz, half

Yolov8 训练代码+部署事例+参考手册 1G资料

下载链接:点击下载

相关推荐

SM小分队Girls on Top,女神战队少了f(x)?

这次由SM娱乐公司在冬季即将开演的smtown里,将公司的所有女团成员集结成了一个小分队project。第一位这是全面ACE的大姐成员权宝儿(BoA),出道二十年,在日本单人销量过千万,韩国国内200...

韩国女团 aespa 首场 VR 演唱会或暗示 Quest 3 将于 10 月推出

AmazeVR宣布将在十月份举办一场现场VR音乐会,观众将佩戴MetaQuest3进行体验。韩国女团aespa于2020年11月出道,此后在日本推出了三张金唱片,在韩国推出了...

韩网热议!女团aespa成员Giselle在长腿爱豆中真的是legend

身高163的Giselle,长腿傲人,身材比例绝了...

假唱而被骂爆的女团:IVE、NewJeans、aespa上榜

在韩国,其实K-pop偶像并不被认为是真正的歌手,因为偶像们必须兼备舞蹈能力、也经常透过对嘴来完成舞台。由于科技的日渐发达,也有许多网友会利用消音软体来验证K-pop偶像到底有没有开麦唱歌,导致假唱这...

新女团Aespa登时尚大片 四个少女四种style

来源:环球网

韩国女团aespa新歌MV曝光 画面梦幻造型超美

12月20日,韩国女团aespa翻唱曲《DreamsComeTrue》MV公开,视频中,她们的造型超美!WINTER背后长出一双梦幻般的翅膀。柳智敏笑容甜美。宁艺卓皮肤白皙。GISELLE五官精致...

女网友向拳头维权,自称是萨勒芬妮的原型?某韩国女团抄袭KDA

女英雄萨勒芬妮(Seraphine)是拳头在2020年推出的第五位新英雄,在还没有正式上线时就备受lsp玩家的关注,因为她实在是太可爱了。和其他新英雄不同的是,萨勒芬妮在没上线时就被拳头当成虚拟偶像来...

人气TOP女团是?INS粉丝数见分晓;TWICE成员为何在演唱会落泪?

现在的人气TOP女团是?INS粉丝数见分晓!现在爱豆和粉丝之间的交流方法变得多种多样,但是Instagram依然是主要的交流手段。很多粉丝根据粉丝数评价偶像的人气,拥有数百、数千万粉丝的组合作为全球偶...

韩国女团MVaespa Drama MV_韩国女团穿超短裙子跳舞

WelcometoDrama.Pleasefollow4ruleswhilewatchingtheDrama.·1)Lookbackimmediatelywhenyoufe...

aespa师妹团今年将出道! SM职员亲口曝「新女团风格、人数」

记者刘宛欣/综合报导南韩造星工厂SM娱乐曾打造出东方神起、SUPERJUNIOR、少女时代、SHINee、EXO等传奇团体,近年推出的aespa、RIIZE更是双双成为新生代一线团体,深受大众与粉丝...

南韩最活跃的女团aespa,新专辑《Girls》即将发布,盘点昔日经典

女团aespa歌曲盘点,新专辑《Girls》即将发布,期待大火。明天也就是2022年的7月8号,aespa新专辑《Girls》即将发行。这是继首张专辑《Savage》之后,时隔19个月的第二张专辑,这...

章泽天女团aespa出席戛纳晚宴 宋康昊携新片亮相

搜狐娱乐讯(山今/文玄反影/图科明/视频)法国时间5月23日晚,女团aespa、宋康昊、章泽天等明星亮相戛纳晚宴。章泽天身姿优越。章泽天肩颈线优越。章泽天双臂纤细。章泽天仪态端正。女团aespa亮...

Aespa舞台暴露身高比例,宁艺卓脸大,柳智敏有“TOP”相

作为SM公司最新女团aespa,初舞台《BlackMamba》公开,在初舞台里,看得出来SM公司是下了大功夫的,虽然之前SM公司新出的女团都有很长的先导片,但是aespa显然是有“特殊待遇”。运用了...

AESPA女团成员柳智敏karina大美女

真队内速度最快最火达成队内首个且唯一两百万点赞五代男女团中输断层第一(图转自微博)...

对来学校演出的女团成员语言性骚扰?韩国这所男高的学生恶心透了

哕了……本月4日,景福男子高中相关人士称已经找到了在SNS中上传对aespa成员进行性骚扰文章的学生,并开始着手调查。2日,SM娱乐创始人李秀满的母校——景福高中迎来了建校101周年庆典活动。当天,S...