百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 文章教程 > 正文

高等数学——砍瓜切菜算积分的分部积分法

yund56 2025-03-04 11:59 7 浏览

今天是高等数学专题的第10篇文章。


今天我们来看另一个解不定积分的方法——分部积分法,这个方法非常常用,甚至比换元法还要常用。在我仅存不多的高数的记忆里,这是必考的内容之一。


虽然这个内容非常重要,但是却并不难,推导也很简单,所以这篇文章几乎没有难度,也没什么公式推导。


原理和推导


分部积分法的原理非常简单,其实也是脱胎于导数公式的推导。我们之前介绍不定积分的时候介绍过通过函数加减计算得到的简单的积分公式。这一次的分部积分公式来源于两个函数乘积的求导法则,利用积分是求导逆运算的性质得到分部积分公式。


我们来看,假设u和v是两个关于x的函数,并且它们的导数连续。根据求导公式,我们可以得到函数uv乘积的导数公式:



这个公式应该很简单,我们在高中数学就很熟悉了,接着我们做一个简单的移项,可以得到:



之后我们再对等式的两边求不定积分



上面的式子还可以简化,写成:



这个就是我们的分部积分公式的推导过程,是不是很简单。可能有些同学会有些疑惑这个结果,比如为什么(uv)'积分之后变成了uv。这个原因很简单,因为求不定积分就是通过导函数求原函数,所以我们对一个函数求导之后的结果再积分,自然得到的就是函数本身。这也是我们之前说不定积分是求导的逆运算的原因。


在一些时候,我们想要求 ∫uv'dx 不太容易,而求 ∫u'vdx 比较容易,这个时候我们就可以用分部积分公式得到结果了。


u和v的选择


在分部积分法当中,最重要的就是u和v的选择,会直接关系到我们的计算量以及复杂度。我们来看下面这个例子。


比如我们想求∫x cosx dx,这个式子比较麻烦,无论是第一类换元法还是第二类换元法都不太好解。我们试试分部积分,这个式子当中只有两个部分,算是比较明显,我们假设 u = x, dv = cosx,那么 v = sinx, du = dx ,我们带入分部积分:



∫sinx dx很容易得到原函数,所以整体的答案就是:



但是为什么一定是 u = x, dv = cosx dx呢?如果我们令 u = cosx, dv = x dx行不行呢?


当然也行,但是整体的计算会麻烦很多,我们简单代入一下就知道,如果 dv = x dx,那么



我们代入之后会得到一个比较复杂的式子:



我们要求这个式子的积分可能比原式还要困难,这个例子说明了一点,就是我们在选择u和v的时候不能盲目,并不是随便选一个函数就可以简化计算的。


一般来说有两个原则可以尽量保证我们使用分部积分法能够获得比较好的结果,第一个原则是v的计算要简单。在刚才的例子当中,如果dv很复杂,那么会使得我们算出的v也很复杂。代入进式子当中之后会使得vdu变得很难计算。第二个原则是 ∫vdu要比 ∫udv容易计算,这个也是显然的,不然我们还用分部积分法干嘛,不如直接算了。


一点诀窍


其实从上面的例子和分部积分的公式当中我们可以发现一点端倪,分部积分的前提是要让v的计算尽量简单,什么样的函数积分和求导都比较简单呢?


很显然,三角函数和各种出现e的函数。所以对于有三角函数以及自然底数e出现的函数,优先考虑分部积分


我们再来看一个例子:



这个例子当中出现了e^x,我们知道 e^x 是个好东西,它的积分和求导都等于它本身,它用来当做v再适合不过了。所以我们令 u = x, dv = e^x,所以 du = dx, v = e^x,我们代入公式即可得到答案:



我们再来看一个例子:



我们令 u = lnx, dv = xdx,所以 du = 1/x dx, v = x^2/2,代入可得:



除了在函数选择上的诀窍之外,另一个trick是我们的分部积分法可以多次使用,对于一些比较复杂的式子通过一次拆分是不够的,这个时候我们可以考虑继续使用分部积分进行多次拆分。我们来看个例子:



还是和之前一样,我们令 u = x^2, dv = e^xdx,所以 du = 2xdx, v = e^x。我们代入原式,可以得到:



我们观察到右侧的式子当中还有一个不太好求的积分,这个时候我们继续使用分部积分法,令

u = 2x, dv = e^xdx, 那么 du=2dx, v = e^x,我们代入可以得到:



和换元法结合


分部积分除了可以多次拆分计算之外,另一个杀器是还可以结合换元法一起使用。这两个方法结合在一起之后威力大增,进一步扩大了公式的应用范围。


比如我们来看一个例子:



这个式子当中我们虽然有e出现,但是它的指数也是一个函数,我们使用分部积分法并不太容易。这个时候就需要结合上换元法了,我们令 t = √x,所以 x = t^2, dx=2tdt我们代入可以得到:



这个式子我们已经很熟悉了,套用一下分部积分,我们很轻松就可以得到:



总结


到这里,我们关于分部积分法的内容就结束了,不仅分部积分法讲完了,我们整个不定积分的求解方法也都讲完了。其实说白了也就只有换元法和分部积分这两种方法,这两种方法虽然简单,但是如果使用熟练的话威力并不小,可以解决很多看起来比较棘手的积分问题。大家可以把这两篇文章结合在一起观看。


今天的文章就是这些,如果觉得有所收获,请顺手点个关注或者转发吧,你们的举手之劳对我来说很重要。

相关推荐

重生之我在头条学html网页编程,这一世我一定学好,成为编程高手

有人要问了html是什么东西?就是用来设计网页的一种语言会不会很难啊?这是很多朋友担心的,我告诉大家这是最简单最基础也最容易学习的一款入门级语言,当初我也是经常因为学不会C语言而苦恼自从学习了html...

如何在网页3D CAD中创建一个三维管道模型

前言在网页CAD中进行三维建模是一项有趣的任务。本文将介绍如何利用mxcad3d来创建三维管道模型。该工具提供了一系列三维建模功能的API,使得建立复杂的管道结构变得简单直观。安装在此之前,需要先安装...

网页模版如何用

网页模版已成为如今网站建设的核心工具。随着互联网需求的增长,越来越多的企业和组织需要建立自己的网站,以展示他们的品牌和服务。在这个过程中,网页模版为他们提供了一种简单而高效的方式来构建网站。所谓网页模...

AI嵌入式Flowcode编程网页开发人员入门指南

WebDeveloper允许使用FlowcodeIDE环境开发具有交互性的网页。可以在2D面板中添加特殊网页组件,以创建网页的视觉表示,并可以使用流程图添加交互功能。它的引入意味着Flowcod...

用Deepseek制作网页版的汉诺塔游戏保姆级教程

在deepseek中输入:“帮我做一个网页版的汉诺塔演示游戏,游戏包含2层、3层、4层、5层的汉诺塔游戏演示,制作自动求解演示按钮,点击按钮就可以生成出步数,同时自动演示最优解动画。”最后把生成的程序...

TaskBuilder前端页面CSS样式规则设置

在前端页面设计器内,点击底部的“CSS样式”选项卡,可以打开CSS样式设计器,在此查看和设计当前页面的CSS样式规则,如下图所示:3.3.6.1引入外部样式文件如果要在页面中引入外部CSS文件,可以点...

使用 Python、FastHTML 和 Uvicorn 构建简单的博客网站

FastHTML是2024年7月推出的PythonWeb框架,是一个简单但功能强大的框架,允许开发人员使用纯Python构建Web应用程序。(不需要复杂的模板引擎)。Fast...

用AI可以生成HTML网页了,很多初级前端都要失业了

即使你完全不懂html,javascript,css,也能做出漂亮的网页,这在以前是不可想象的,而现在确是可行的,因为有这样一个项目:openUI。openUI不仅仅能生成html页面,还能生成自适应...

python原始套接字socket下载http网页文件到txt

python原始套接字socket下载http网页文件到txtimportsocketdefdownload_webpage(url,output_file):try:...

高效排版:实现DeepSeek生成内容Word格式排版并导...

高效排版:实现DeepSeek生成内容Word格式排版并导出的经典方法,步骤简洁高效:DeepSeek生成内容复制出来容易出现乱码,下面介绍一种比较高效简单的方法!一、核心三步法1.调整模型模式在D...

打工人福音!3分钟教你学会word精美排版

昨天大熊介绍了word一键排版的三种办法,今天我们来详细讲讲第二种办法,用html代码实现一键排版,然后再导出pdf实现精美效果。打工人,打工魂,你是不是也有以下烦恼?下面是我经过多次和Deepsee...

使用 HTML 创建可折叠的交互式组件,一行 JS 代...

如果你想创建一个可折叠的交互式组件,使用<details>元素即可,一行JavaScript也不用写。<details>组件定义了一个可折叠的容器,它的第一个元素必须...

新手小白1分钟学会Word——文档的编辑1.1

天空一声巨响,迷人的我闪亮登场,亲爱的家人们,周末好呀!话不多说,咱们继续开干!昨天说到本节还有个小尾巴,那咱们就把这个小尾巴了结了,然后开始新篇章~四、保存文档我们对文档编辑完之后最重要的一步就...

超强!DeepSeek+HTML制作数据看板,老板看了都点赞

DeepSeek以极强的推理能力,支持生成各种代码,比如Python、SQL、Matlab、JS、HTML等,你可以拿这些代码放到编译器里,就能直接跑出结果,比如机器学习算法、exe应用、可视化图表、...

什么是Tailwind CSS

什么是TailwindCSSTailwindCSS是一个实用优先(Utility-First)的CSS框架,其核心思想是通过直接在HTML中组合预定义的类名来快速构建界面样式,无需编写传...