百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 文章教程 > 正文

高等数学——求解不定积分的经典换元法

yund56 2025-03-04 11:59 34 浏览

今天是高等数学专题的第九篇文章,我们继续来看不定积分。


在上篇文章当中我们回顾了不定积分的定义以及简单的性质,我们可以简单地认为不定积分就是求导微分的逆操作。我们要做的是根据现有的导函数,逆推出求导之前的原函数。


除了基本定义之外,我们还介绍了一些简单的性质和常用积分的积分表。但是显然根据已有的性质对于许多复杂的函数来说求解积分仍然非常困难,所以本篇文章的重点是继续介绍不定积分的运算性质,从而简化我们一些复杂函数的计算过程。甚至是完成一些原本不能完成的计算。今天介绍的是最常用的换元积分法


换元法是数学当中经常用到的方法,无论是求导计算还是一些复杂函数的运算,我们经常会使用换元法来降低问题的难度。同样,在不定积分的求解当中,我们一样可以使用换元法来进行。通常换元法分成两类,为什么会有两类?这两类有什么不同?这些问题可以先放一放,等看完文章就清楚了。


第一类换元法


第一类换元法比较容易理解,其实是链式求导法则的逆运算


比如,我们有函数F'(u) = f(u) ,显然函数F(u)是f(u)的原函数,所以:



如果u是中间变量,并且 u = φ(x),我们对 F(u) 求导,根据复合函数的链式求导法则,可以得到:



我们把上面这个式子用积分反过来,就可以得到不定积分的换元公式



我们通过简单的推导获得了公式,那么这个公式怎么用呢?初看起来总有些难以下手的感觉,这是正常的,我们需要继续来化简。


假设我们要求 ∫g(x)dx ,直接求解比较麻烦,如果我们可以把g(x)想办法转化为 f[φ(x)]φ'(x) 的形式,那么我们就可以套用公式得到:



这个时候函数g(x)的积分就转化成了函数f(u)的积分,如果能求到f(u)的原函数,那么我们也就得到了g(x)的原函数。一般来说经过了换元化简之后得到的函数f(u)都会比原函数g(x)简单得多,这也是换元法的意义。


光说不练假把式,我们来看一个例子:



由于分母上的x有一个系数,导致我们不能直接使用积分公式。这个时候就需要换元,不难想到,我们可以用u = 3 + 2x。由于我们要凑出f(u)du,我们发现u对x的导数为2,所以我们可以将原式变形:



通过上面这个例子,我们可以发现,其实换元法的精髓很简单,我们在换元之后,需要凑一下f(u)du。当我们凑到了之后,就可以把u当成变量套积分公式了。


我们再来看一个复杂一些的例子:



在这个例子当中,我们要计算的函数比较复杂,既包含三角函数,又有平方操作。简单粗暴直接搞肯定是不行的,我们需要先把 cos^2 x看成是 cosx * cosx,这样我们就可以套用积化和差公式,得到:

1/2(1 + cos2x) 到这里就简单很多了:



我们令u = 2x,上式可以变形为:



第二类换元法


熟悉了第一类换元法之后,我们来看第二类换元法。


在第一类换元法当中我们用一个新的变量来代替了一个相对比较复杂的函数,比如我们用u代替了2x或者是2x+3等函数,简化了后续的运算。而第二类换元法的思路刚好相反,我们将原本单一的变量转化成一个复杂的表达式。比如我们用三角函数或者是极坐标来表示原本的x,这种做法在高中的数学题当中经常常见,尤其是解析几何的问题。我们经常建立极坐标,用极坐标公式来换元简化计算。


也就是说第二种换元法刚好和第一类换元法的逻辑相反,我们是将x转化成 φ(t)。所以换元公式为:



但是这么做是有前提的,f(x)既然可积说明积分一定存在,但是右边换元之后的式子却并不一定。所以我们需要保证 ∫f[φ(t)]φ'(t) 的原函数存在。其次,在我们换元计算结束之后,我们需要用 x = φ(t) 的函数的反函数 t = φ^(-1) 代入回去。但是要保证反函数存在并且可导的,我们可以简单认为原函数 x = φ(t) 在某个区间上是单调可导的,并且 φ'(t) != 0。


我们根据上面的定义写出换元公式:



我们同样可以使用链式求导法则来证明,我们假设 f[φ(t)]φ'(t) 的原函数是 Φ(t),所以



我们对F(x) 求导,可以得到:


于是得证。


我们同样来看一个例子:



这个例子当中又有平方根,又有平方项,看起来非常麻烦,这个时候我们就需要进行换元。因为

sin^2t + cos^2t = 1 ,所以我们可以令 x = asint,-π/2 < t < π/2。我们代入原式,可以得到:



∫cos^2 tdt 其实就是我们上面讲的第二个例子,我们之前计算得到过答案:



我们代入原式,可以得到:



由于 x = asint,-π/2 < t < π/2 所以



我们将这些带入上式可以得到最终结果:



到这里,两个换元方法就介绍完了,虽然看起来简单,但是我们结合之前介绍的常用积分公式,还可以衍生出许多种不同的用法。但是想要把这些用法全部吃透需要我们对积分公式以及换元应用都非常熟悉才行,这些并不是一两篇文章就能做到的,必须要做大量的练习,我想考研的同学应该有非常深刻的体会。


今天的文章就是这些,如果觉得有所收获,请顺手点个关注或者转发吧,你们的举手之劳对我来说很重要。

相关推荐

SM小分队Girls on Top,女神战队少了f(x)?

这次由SM娱乐公司在冬季即将开演的smtown里,将公司的所有女团成员集结成了一个小分队project。第一位这是全面ACE的大姐成员权宝儿(BoA),出道二十年,在日本单人销量过千万,韩国国内200...

韩国女团 aespa 首场 VR 演唱会或暗示 Quest 3 将于 10 月推出

AmazeVR宣布将在十月份举办一场现场VR音乐会,观众将佩戴MetaQuest3进行体验。韩国女团aespa于2020年11月出道,此后在日本推出了三张金唱片,在韩国推出了...

韩网热议!女团aespa成员Giselle在长腿爱豆中真的是legend

身高163的Giselle,长腿傲人,身材比例绝了...

假唱而被骂爆的女团:IVE、NewJeans、aespa上榜

在韩国,其实K-pop偶像并不被认为是真正的歌手,因为偶像们必须兼备舞蹈能力、也经常透过对嘴来完成舞台。由于科技的日渐发达,也有许多网友会利用消音软体来验证K-pop偶像到底有没有开麦唱歌,导致假唱这...

新女团Aespa登时尚大片 四个少女四种style

来源:环球网

韩国女团aespa新歌MV曝光 画面梦幻造型超美

12月20日,韩国女团aespa翻唱曲《DreamsComeTrue》MV公开,视频中,她们的造型超美!WINTER背后长出一双梦幻般的翅膀。柳智敏笑容甜美。宁艺卓皮肤白皙。GISELLE五官精致...

女网友向拳头维权,自称是萨勒芬妮的原型?某韩国女团抄袭KDA

女英雄萨勒芬妮(Seraphine)是拳头在2020年推出的第五位新英雄,在还没有正式上线时就备受lsp玩家的关注,因为她实在是太可爱了。和其他新英雄不同的是,萨勒芬妮在没上线时就被拳头当成虚拟偶像来...

人气TOP女团是?INS粉丝数见分晓;TWICE成员为何在演唱会落泪?

现在的人气TOP女团是?INS粉丝数见分晓!现在爱豆和粉丝之间的交流方法变得多种多样,但是Instagram依然是主要的交流手段。很多粉丝根据粉丝数评价偶像的人气,拥有数百、数千万粉丝的组合作为全球偶...

韩国女团MVaespa Drama MV_韩国女团穿超短裙子跳舞

WelcometoDrama.Pleasefollow4ruleswhilewatchingtheDrama.·1)Lookbackimmediatelywhenyoufe...

aespa师妹团今年将出道! SM职员亲口曝「新女团风格、人数」

记者刘宛欣/综合报导南韩造星工厂SM娱乐曾打造出东方神起、SUPERJUNIOR、少女时代、SHINee、EXO等传奇团体,近年推出的aespa、RIIZE更是双双成为新生代一线团体,深受大众与粉丝...

南韩最活跃的女团aespa,新专辑《Girls》即将发布,盘点昔日经典

女团aespa歌曲盘点,新专辑《Girls》即将发布,期待大火。明天也就是2022年的7月8号,aespa新专辑《Girls》即将发行。这是继首张专辑《Savage》之后,时隔19个月的第二张专辑,这...

章泽天女团aespa出席戛纳晚宴 宋康昊携新片亮相

搜狐娱乐讯(山今/文玄反影/图科明/视频)法国时间5月23日晚,女团aespa、宋康昊、章泽天等明星亮相戛纳晚宴。章泽天身姿优越。章泽天肩颈线优越。章泽天双臂纤细。章泽天仪态端正。女团aespa亮...

Aespa舞台暴露身高比例,宁艺卓脸大,柳智敏有“TOP”相

作为SM公司最新女团aespa,初舞台《BlackMamba》公开,在初舞台里,看得出来SM公司是下了大功夫的,虽然之前SM公司新出的女团都有很长的先导片,但是aespa显然是有“特殊待遇”。运用了...

AESPA女团成员柳智敏karina大美女

真队内速度最快最火达成队内首个且唯一两百万点赞五代男女团中输断层第一(图转自微博)...

对来学校演出的女团成员语言性骚扰?韩国这所男高的学生恶心透了

哕了……本月4日,景福男子高中相关人士称已经找到了在SNS中上传对aespa成员进行性骚扰文章的学生,并开始着手调查。2日,SM娱乐创始人李秀满的母校——景福高中迎来了建校101周年庆典活动。当天,S...